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ABSTRACT

Development of a GPU Based Real-Time Interference Mitigating Beamformer
for Radio Astronomy

Jeffrey M. Nybo
Department of Electrical and Computer Engineering, BYU

Master of Science

Radio frequency interference (RFI) mitigation enables radio astronomical observation in 
frequency bands that are shared with many modern satellite and ground based devices by filtering 
out the interference in corrupted bands. The present work documents the development of a beam-
former (spatial filter) equipped with RFI mitigation capabilities. The beamformer is intended for 
systems with antenna arrays designed for large bandwidths. Because array data post processing on 
large bandwidths would require massive memory space beyond feasible limits, there is a need for 
a RFI mitigation system capable of doing processing on the data as it arrives in real-time; storing 
only a data reduced result into long term memory. The real-time system is designed to be imple-
mented on both the FLAG phased array feed (PAF) on the Green Bank telescope in West Virginia, 
as well as future radio astronomy projects. It will also serve as the anti-jamming component in 
communications applications developed for the United States office of naval research (ONR). Im-
plemented on a graphical processing unit (GPU), this beamformer demonstrates a working single 
step filter using nVidia’s CUDA technology, technology with high-speed parallelism that makes 
real-time RFI mitigation possible.

Keywords: RFI mitigation, spatial filtering, Green Bank telescope, beamforming, subspace 
projection
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CHAPTER 1. INTRODUCTION

“Astronomy compels the soul to look upwards and leads us from this world to another.”

-Plato

1.1 Introduction

Radio astronomy (RA) is the discipline of observing electromagnetic radiation in the cos-

mos. While astronomy is often thought of as observing what the eye can see, traditional optical

telescopes reveal only a small portion of all that can be found in the universe. Celestial bodies emit

light in all parts of the electromagnetic spectrum. In an effort to gather more insight into these

celestial bodies, astronomers will observe the universe at many frequencies. Aside from visible

light wavelengths, signals can be at gamma, ultraviolet, infrared, microwave, millimeter wave and

all other radio frequency bands.

From pulsars to quasars, to active galactic nuclei, to spectral line emissions from thermally

excited gas clouds, the night sky is replete with radiation found in radio bands which can not be

observed optically. For example, hydrogen, the most abundant element found in the universe, emits

a signal at 1.42 GHz. Radio astronomers call this the HI spectral line or HI radiation. The true

extended shapes of galaxies can be seen by observing HI radiation. Other examples of sources

detectable in the radio frequency bands include supernovae, black holes, fast radio bursts and the

cosmic microwave background radiation to name a few. Some other sources of note include the

sun, Sagittarius A (the center of the Milky Way), and Cassiopeia A which is the brightest radio

source in the sky other than the sun and moon. Aside from the sun, moon and Cassiopeia A,

however, most signals in RA are fairly faint.

The task of detecting signals for radio astronomical observation is non trivial. Signal to

noise ratios (SNRs) for most radio sources are routinely 30 to 50 dB below the ambient noise floor

in the night sky. To detect deep space sources, specially designed high gain large antennas and

1
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sophisticated signal processing algorithms have been developed over the years, always trying to

provide the clearest observations.

Among the many instruments developed for RA, phased antenna arrays have emerged as

a particularly desirable solution. Coupled with signal processing algorithms, the antenna array

can do many things such as interferometry, image forming, direction finding, and a kind of spatial

filtering called beamforming. All these techniques (and others) are used in RA, but the subject of

this thesis is beamforming.

A beamformer with a digital back end enables good signal detection for weak deep space

signals. A beam can be formed and electronically steered (without antenna motion) in the direc-

tion of the signal of interest (SOI). All plane waves arriving in the direction of the beam will be

amplified, while any signals arriving from other directions are attenuated. If the beam is pointed at

a particularly weak SOI the signal can be observed over the noise floor by gathering signal energy

over long time windows and integrating the result. When this is done, the signal is seen to “poke

up” over the noise floor and estimation error fluctuations. The systems presented herein do all of

this, but there is still a problem.

Were the night sky completely free from man made radio interference, the above solution

would be sufficient for the science, however the ever growing satellite population in the world’s

modern information age makes it necessary for another level of sophistication. Radio Astronomy

bands of interest lie in varying bandwidths between 13 MHz and 100 GHz. As an example of

interference, modern GPS satellites use two carrier frequencies: the L1 frequency at 1575.42 MHz

and the L2 at 1227.6 MHz which lie in Radio Astronomy bands. Specific bands such as the

37.5–38.25 MHz, the 322.1–328.6 MHz, the 406.1–410 MHz and three others are all allocated to

be shared between RA, mobile and other services [1]. Nearly every other frequency band allocated

for RA is shared with other services [1]. This motivates the need for radio frequency interference

(RFI) mitigation in modern telescopes.

At the time of this publication, not many radio telescopes in the world do adaptive RFI

mitigation with array signal processing. The current convention in RA is to write off the corrupted

frequency channels as useless, with a practice called “flagging.” Some say that RFI mitigation is

unreliable and others simply don’t appreciate its contribution.

2
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Flagging does not solve the problem which will only get worse as time goes on. By mit-

igating the effect of RFI on the incoming data, many corrupted channels can be recovered and

used again. Good algorithms have been developed by the signal processing community that not

only demonstrate that RFI mitigation is possible but that it dramatically improves telescope perfor-

mance. The following section is a survey of various publications that have shown RFI mitigation

is possible and/or has been demonstrated to some extent on or for different telescopes around the

world as well as a signal processing technique itself independent of RA.

1.2 A Survey of Literature on RFI Mitigation for Radio Astronomy

The work presented in this thesis uses a subspace projection method to do RFI mitigation

(see Chapter 2). This was first introduced for array signal processing in radio astronomy by Leshem

and van der Veen [2] in 2000. They explored spatial signal estimation with calibrated receivers

in 2001 [3]. Projection techniques in RA were further explored in 2004 [4]. They also proved

that many different spatial filtering techniques for RFI, in addition to subspace projection, could

improve synthesis imaging techniques [5].

Brigham Young University has a rich history of RFI mitigation with antenna arrays for

radio astronomical telescopes. Simulations and proposals for subspace projection using auxiliary

antennas on the VLA in Socorro, New Mexico were explored in [6] and [7]. RFI mitigation with a

phased array feed (PAF) using a single reflector was explored in [8]. Bias correction in subspace

projection techniques for power spectral density estimation was presented in [9]. Experimental re-

sults from 2007 prove successful RFI mitigation is possible on a 19 element array feed [10]. This

provides hard evidence that RFI mitigation actually works and is practical. Since 2003, BYU and

NRAO have worked in collaboration to design the phased array feed and digital signal processing

backend of the Greenbank telescope in West Virginia. In [11] RFI mitigation techniques includ-

ing bias correction were proposed with the NRAO observatory as the target platform. Subspace

projection was also introduced for the NRAO platform in [12]. Moving RFI, real-time updating

of beamformer weights and “spectral scooping” with narrow band interference is explored in [13].

Subspace projection was explored as it would apply to the LOFAR (Low Frequency Array) in the

Netherlands [14]. A survey of many RFI mitigation techniques, limitations and methods for deeper

nulls and less main lobe distortion was presented in [15]. The interesting case of RFI mitigation in

3
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low interference to noise ratio (INR) environments, and possible solutions, was presented in [16].

In 2014 [17] experimental results finally proved that the FLAG system on the NRAO telescope

was functional making it a potential platform for RFI cancelling beamforming. In 2015 a col-

laboration was done on a multi-tier RFI mitigation system with Aaron Chippendale and Gregory

Hellbourg [18].

Gregory Hellbourg has particularly explored subspace projection for radio astronomical

observation. He proposed a unique subspace projection algorithm and technique called “Oblique

Projection” [19] in 2012. He presents three new techniques on detecting the RFI spatial signature

in [20]. He did some performance analysis on pre and post correlation data with subspace pro-

jectors [21], data from the LOFAR radio telescope and EMBRACE (Electronic MultiBeam Radio

Astronomy ConcEpt) was used in the analysis. (EMBRACE is a 20,000 element, multi beam radio

astronomical phased array demonstrator [22].) He, Aaron Chippendale and Brian D. Jeffs from

BYU came together to develop a publication [23] on subspace tracking using a reference antenna,

statistical performance was also presented [24]. To reduce subspace smearing and improve RFI

mitigation Hellbourg presented solutions for estimating the subspace spanned by the RFI within

the complexity of a phased array radio telescope [25]. He presents the corrupted array radio tele-

scope model here [26]. Using the Cramer-Rao Bound to measuere the power estimation error

variance on an SOI in the presence of RFI, the quality of the estimation of the spacial signature

vector under different calibration quality levels from perfect to sub-perfect calibration was deter-

mined [27]. A non-linear technique that can work for RFI sources whose spatial signatures are very

similar to that of the SOI was presented in [28]. He did some direct experiments on the ASKAP

beta array [29]. on the Australian Square Kilometre Array Pathfinder (ASKAP) array located 800

km north east of Perth, Australia. Both Gregory Hellbourg and Aaron Chippendale presented the

results of a first attempt to mitigate RFI in real-time on the ASKAP array in [30].

Other work worthy of note has been done to address RFI mitigation in radio astronomy.

John M. Ford and Kaushal D. Buch present a survey of regulatory methods and technical methods

for RFI mitigation techniques [31]. Also, a survey of all efforts to reduce RFI around the NRAO

telescope is presented in [32].

As has been shown, significant effort has gone into RFI mitigation for radio astronomy

because there is such a need for good observation. Clearly subspace projection is a widely studied

4
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and successfully implemented method. The present work seeks to further the science by presenting

the development of a subspace projection RFI mitigation array processing algorithm on a GPU for

real-time adaptive filtering.

1.3 Problem Statement

On the BYU Focal L-band Array (FLAG) system housed at the NRAO observatory in

Green Bank West Virginia there is a need for a real-time RFI mitigating beamformer system. As

shown above, many subspace projection solutions have been explored and simulated. The problem

with implementing RFI mitigation using subspace projection is that large volumes of time samples

of data arrays need to be processed to get a good characterization of the subspace. Getting enough

hard drive space to do the whole job, post observation, is not just expensive, it’s not really feasible

for large antenna arrays with large bandwidths.

The FLAG system does provide unique data storing features not found on other RA so-

lutions. While it does store an averaged sum over a long term integration (LTI) window of the

spectra observed coming out of the beamformer, it can also store short term integrated (STI) array

covariance matrices in its HI fine spectral mode. By doing this the stored covarience matrices can

be used for post-processing RFI nulling. However, in FLAG pulsar or FRB mode, and for all other

known phased arrays in RA, this is not possible.

A solution for the FLAG pulsar and FRB modes, as well as all other arrays in the wider

RA community, is to do the processing “on the fly” in real-time. That is, to take the data chunk

by chunk as it flows through the system and do rapid subspace computation and RFI mitigation on

the data as it arrives and then pass it along to the integrator having had the RFI component in the

data filtered out. The reason why this has not yet been implemented is that there have not been

strong enough parallel processing solutions developed that can keep up with the high data rate.

This thesis presents a solution that will perform subspace computation at the required data rate.

1.4 Thesis Contribution

The present work documents the development of a real-time RFI mitigating beamformer

doing subspace projection. It is realized on Graphical Processing Units (GPUs) which have power-

5
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ful parallel processing capabilities that can handle large data rates. To the knowledge of the author,

no real-time subspace projected RFI mitigation solution has been implemented on any radio astro-

nomical telescope that can keep a 13ms per frequency channel data update cycle. This contribution

represents a big performance achievement for RFI mitigation in the radio astronomy community.

1.5 Outline

The thesis is laid out as follows:

• Chapter 2: An introduction to the theory of array signal processing for beamforming and

subspace projection for RFI mitigation.

• Chapter 3: The design of the system itself. First, the chapter will introduce the FLAG system

and an overview of the system will be presented. The discussion will then lead into the tools

used to make the system. Finally, the RFI mitigating beamformer will be introduced and

described part by part.

• Chapter 4: Testing and verification of the full system will be presented. Here evidence that

the system will be real-time, once finalized, is given. Successful RFI mitigation is then

demonstrated with medium fidelity simulated data generated and passed through the filter

showing the RFI component removed at the beamformer output.

• Chapter 5: The final steps needed to complete the filter will be presented here. Finally, the

discussion ends with the future applications the beamformer will have in the radio astronomy

and communications communities.

6
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CHAPTER 2. THEORETICAL BACKGROUND

2.1 Introduction

To offer the reader perspective, this chapter will provide a brief introduction to antenna

arrays and beamforming theory. First, the signal model for antenna arrays will be derived from

the uniform line array approach. A discussion on beamforming with antenna arrays will then be

explored. Finally, the RFI mitigation model will be introduced.

This should provide sufficient background for the system presented herein. If more detail

is desired, Van Veen and Buckley [33] provide a useful overview tutorial to spatial filtering and

beamforming. For a broader treatment see Hayes [34] and Van Trees [35], which provide great

presentations on contemporary digital systems for stochastic signals, parametric modeling and

adaptive filtering.

2.2 Signal Model for a Uniform Line Array

Consider a plane wave coming from a source at a specified angle Ωs with respect to a uni-

form line array (ULA) of antennas as illustrated in Figure 2.1. (For simplicity of presentation, we

use a ULA array as an example. The actual PAF arrays addressed in this work have a variety of reg-

ularly space array elements.) The line coming from the right represents the plane wave. Note that

the antennas each receive the signal but at successive time delays (and thus frequency dependent

phase shifts) from each other. Now we consider a single narrowband frequency channel and adopt

the narrowband beamforming model [33]. Broadband signals are represented as a concatenation

of a series of independent narrowband beamformers spanning a range of frequencies. If the signal

arriving on this plane wave is unit amplitude being captured by the ULA, then let the recorded

complex base banded voltage levels read at each antenna element due to the source be denoted as

a = [a0,a1, ...,aL−1]
T , (2.1)
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Figure 2.1: A plane wave arrives from a far-field source to a uniform line array (ULA)

where a denotes a vector of voltages and a0 is the voltage recorded at antenna zero and a1 antenna

one and so on for L antenna elements. For a uniform line array with spatially isotropic element

responses, the voltage seen from a unit amplitude plane wave can be modeled as

ai = e j2π
f
c idsin(Ωs), (2.2)

where d represents the distance between adjacent antenna elements. Let f be the center frequency

of the narrow-band channel under consideration and c be the propagation speed of electromagnetic

radiation. Equation (2.2) tells us that the complex base banded voltage seen at antenna element i

has its unique phase offset from the i = 0 element. Call a the array response vector to a signal

arriving from angle Ωs.

Now let s[n] denote a time sampled sequence corresponding to the signal waveform that

was propagating as a plane wave and arrived at the antenna array. Also, let n[n] represent the

additive noise seen by the array including the combined resulting noise response vector due to

spillover noise, sky noise, thermal noise and receiver noise [11]. The signal model at the array is

now

x[n] = as[n]+n[n]. (2.3)

8
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The above signal model is a random (stochastic) process since the signal arriving is noise-

like for radio astronomy sources, and x[n] also includes a random noise component. The noise is

zero mean with variance σ2. The array correlation matrix is estimated over a set of M time samples

as

Rx =
1
M

M−1

∑
n=0

x[n]xH [n]≈ E{x[n]xH [n]}, (2.4)

where the “H” denotes the conjugate vector transpose operator known as the Hermitian transpose

and “E{·}” is probabilistic expectation. It should be noted that equation (2.4) is valid only because

x[n] is variance ergodic.

The final piece of the model is to include the contribution RFI adds to it. Assuming that

there are Q interferers arriving at the array, the complete signal modal is

x[n] = as[n]+
Q

∑
q=1

vqbq[n]+n[n], (2.5)

with vq being the array response vector for the direction to the qth RFI source and bq[n] being the

interferer’s signal sequence.

2.3 Beamforming

One of the primary benefits of an antenna array is the ability to do beamforming. Simply

put, a beamformer is a spatially selective filter. Just as frequency selective filters can “select”

frequency channels by amplifying desired frequencies and attenuating unwanted frequencies, a

beamformer can select incoming plane waves based on angle of arrival.

An antenna array with a digital back-end can leverage modern signal processing techniques

to create specific beam patterns. Signal processing theory for beamformers builds directly upon

well developed frequency selective theory, thus allowing the rich literature of digital filtering to be

applied to antenna receivers. This connection is a signature innovation for both the antenna as well

as the signal processing communities.

A beamformer would be called a “band pass” by traditional filtering verbage but operates

in the spatial domain (i.e. direction of arrival) and not the frequency domain. The beamformer’s

“pass-band” (called it’s main lobe) is pointed in the direction (Ωs) of the signal of interest. The

9
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Figure 2.2: A basic diagram of a Beamformer. Plane waves arrive from SOI and RFI to the array.
Each antenna element is weighted by the elements of the weight vector. The result is a summed
and sent through a PSD estimator where the spectrum is then observed.

computed beamformer output is given by

y[n] = wHx[n], (2.6)

with w being an array of complex valued beamformer weights and x[n] being the received array

signal vector, with RFI, as explained in equation (2.5). See Figure 2.2 for a visual representation

of the beamformer filter. A typical application would then pass the beamformer output through a

PSD estimator and the spectrum Sy is then sent to the user.

If the reader is familiar with traditional discrete-time signal processing DSP, the filter

weights can be thought of as a set of FIR filter coefficients excepting that they apply to the spatial

domain rather than the frequency domain.
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Appropriate selection of these beamformer weights is a whole field unto itself. Statistically

optimal beamforming, adaptive beamforming and other beamforming techniques are discussed in

van Veen and Buckley [33]. Please refer to [33] and [35] for a more developed discussion. For

purpose of this thesis, it is assumed that a maximum signal to noise (maxSNR) weight vector is

used prior to application of an RFI mitigation algorithm. The maximum SNR weight vector is

one statistically optimal choice described by van Veen and Buckley that will work well in an RA

application. For a point source SOI,

wmaxSNR = R̂−1
n a, (2.7)

where R̂n is the sample estimate for the noise covariance matrix.

Though RFI mitigation can be done in a variety of ways, the system presented herein uses

the subspace projection method. The next section will show how subspace projection can take

the pre-computed maxSNR beamformer weights and project them into a space where the RFI is

mitigated. The projected weights remove the RFI component from the signal. This manifests itself

in the beam pattern with a null (a trough) placed in the direction of the RFI.

2.4 Subspace Projection Beamforming

The objective of the RFI filter is to remove the RFI component of the signal while main-

taining as much integrity of the SOI as possible. Received signals are put through a correlator

which takes M time samples to form the mth short term integration (STI) window resulting in a

correlation matrix

Rx,m =
1
M

(m+1)M−1

∑
n=mM

x[n]x[n]H . (2.8)

The span of the columns of Rx (its range or column space) constitutes an estimate of the signal

space S of x,

R(Rx) = span([x[mM], . . . ,x[(m+1)M−1]) = S, (2.9)
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where R(·) denotes the range space. There are three, not necessarily orthogonal, subspaces that

constitute the signal space:

span(a) = O, (2.10)

span([v1, . . . ,vQ]) =V, (2.11)

span(n) = N = span(x[n]) = S. (2.12)

So the task of the subspace projection filter is to accomplish the projection of the beamformer

weights into a subspace W that is orthogonal (or as near to orthogonal as possible) to the RFI space

V ,

W ⊥V, (2.13)

W ⊂ S. (2.14)

To produce a projection operator into the null space of the RFI, P : S→W , an eigenvector decom-

position is required:

Rx = UΛUH, (2.15)

where the columns of U constitute the eigenvectors of Rx and R(U) spans S. If Q = 1 and the

RFI interference to noise ratio (INR) is sufficiently larger then the SNR then the eigenvector cor-

responding to the max eigenvalue umax represents the RFI and the projection operator is formed as

follows:

P = I−umaxuH
max, (2.16)

where I is the identity matrix whose column space spans the full Ω=RL vector space and umaxuH
max

spans V . This means that

R(P) = Ω−V =W, (2.17)

and the projection operator is P : S→W . Which will project the previously computed beamformer

weights into the null space of the RFI

Pw = wsp. (2.18)
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Figure 2.3: When the beamformer weights are projected into the RFI-mitigated subspace a null is
placed in the direction of the RFI.

If the projection is successful, then the resulting beam-pattern produced by wsp will place a null

in the direction of the RFI source while maintaining the integrity of the main lobe in the beam

pattern. By nulling out the RFI component of the signal the SOI can be observed far more clearly

and the corruption is mitigated. The concept is depicted in Figure 2.3.

All of the parts of the real-time RFI mitigating beamformer will accomplish various parts of

the above linear algebra in a GPU. The system design and layout is the subject of the next chapter.
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CHAPTER 3. AN APPROACH FOR FILTERING RFI IN REAL-TIME ON THE
GREENBANK TELESCOPE

3.1 Implementing a Real-Time RFI Mitigation System

As addressed in Chapter 1, RFI canceling has been explored and proven to be a viable solu-

tion in radio astronomical observation. Though it has not yet been widely adopted by astronomers,

it has the capability of reducing the corrupting effect of RFI to a level which will allow the data to

be used again. An implemented real-time prototype is a strong indicator that this technology can

further the science.

This chapter presents the development of a real-time RFI cancelling beamformer imple-

mented on a graphical processing unit (GPU). This is a prototype filter that will fulfill the real-time

filtering constraints of a world class broadband beamforming phased-array-feed (PAF) equipped

radio astronomical telescope in West Virginia at the Green Bank Radio Observatory. The prototype

demonstrates critical functions and components of a real-time RFI mitigation system. The most

closely related demonstration project was reported by Aaron Chippendale for an experiment with

the ASCAP phased array feed mounted on the Parks telescope in Australia [30]. To the author’s

knowledge, however, no real-time system has met the tight real-time constraints that this system

achieves.

3.2 Overview of the FLAG system on the Greenbank Telescope

The proposed RFI mitigation process is meant to add adaptive spatial filtering capabilities

to the beamformer backend of the Focal L-band Array for the Greenbank Telescope (FLAG) sys-

tem. It is a system designed to be on the dish of the NRAO Observatory in Green Bank, West

Virginia. This state-of-the-art beamformer is fully equipped to observe HI radiation as well as

radio transients [12] with its complete 150-MHz Bandwidth 38-element L band phased array feed

(PAF) analog receiver and digital processor. FLAG consists of two parts: an analog receiver (front-
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Figure 3.1: The Greenbank Telescope at the Greenbank Observatory (GBO), West Virginia.

end) and a digital signal processing (DSP) system (back-end). Figure 3.2 presents a general block

diagram of the overall FLAG system. What follows is a brief description of the FLAG front-

end followed by a more thorough investigation of the back-end where the beamforming and RFI

mitigation will occur.

3.2.1 FLAG System Architecture

There is a phased array of 19 dual-polarized antenna elements connected to cryogenically

cooled low noise amplifiers who’s signals are then routed through and IQ down mixer and analog

to digital converter (ADC). The signals are transported down from the telescope via a fiber optic

digital down link (DDL) to the “F-engine” which uses a polyphase filter bank to “frequency chan-

nelize” the antenna data. The F-engine is implemented on an FPGA system from UC Berkeley

called the ROACH II. The output from five ROACH II boards is a total of 500 frequency channels,

each 303kHz wide, which are routed to five high powered computers (HPCs). Each HPC contains

two nVidia GTX980 graphical processing units (GPUs), for a total of 5 × 2 = 10 GPUs in the

whole system. These HPCs and GPUs house the heart of the DSP system where beamforming and

array correlation processes are applied to the signals captured by the array.

15



www.manaraa.com

Figure 3.2: FLAG System Overview. The part on the left constitutes front end and the part on the
right is considered the back end. Data flows from front to back.

First the CPU handles the Input/Output and data management which transfers the data, now

frequency channeled from the front end, to one of the two GPUs in each HPC. Data is processed

in blocks, with real-time handling through the GPUs managed using a pipe-lining scheduler called

HASHPIPE (see section 3.2.4 for more detail regarding HASHPIPE). Two HASHPIPE instances

are implemented in each GPU. There are two GPUs on each HPC so a total of 4 HASHPIPE

instances reside on each HPC. Thus, 4 × 5 = 20 HASHPIPE instances work in parallel each on a

separate selection of 25 frequency channels. In this way the task of signal processing across the

whole bandwidth is subdivided.

The system is meant to accomplish different tasks at different times. Thus, it has been

designed to run in various modes which can accomplish such jobs as array correlation, real-

time beamforming, fine channelization through poly-phase filtering, computation of total received

power per frequency channel (i.e. spectrometer), and so on, [36], [37], [17]. The new mode being

proposed in this thesis, called “XRFI” Mode (“X” for “remove” or “cross out” and RFI for radio

frequency interference), will accomplish the job of spatial filtering to remove RFI in real-time.
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3.2.2 A Note on the Frequency Bin Ordering

In all modes, the F-engine’s primary job is acquisition and frequency channelization. The

beamformer/correlator (called the “BX-Engine”) will process these channels, but the order in

which the channels arrive there deserves some special note.

Each of the frequency channels are deliberately ordered in such a way that contiguous

channels are spread across HPCs (See Figure 3.3). The frequency bins being generated at the

ROACHES are routed in such a way that contiguous channels are spread across the HPCs. The

task of processing contiguous frequency bins is thus divided evenly among the HPCs, even if the

total bandwidth is reduced as in HI observing mode. Each GPU has two instances of the software

running on it. Each instance is to receive 25 frequency channels to “divide and conquer” the task

of processing the data.

500 frequency channels
5 HPCs×2 GPUs×2 software instances

= 25
frequency channels
software instance

The first 5 frequency channels arriving at HPC 1, GPU 1, software instance 1 will be

frequency channels 0-4. The next 5 frequency channels will be frequency channels 100-104 and

so on. Thus if only the first 5 frequency channels are selected in each software instance then the

contiguous channels 0-99 are selected in parallel across the whole array of HPCs. Also note that

the 25 frequency channels arriving at a software instance are not contiguous. Putting the data

in parallel across the GPUs maximizes throughput. The GPUs themselves will work on the 25

frequency bins handed to them in parallel as well. This parallel (or array) processing on the GPUs

is made possible by CUDA.

3.2.3 CUDA

XRFI mode is designed for a CPU with a graphical processing unit (GPU) on it. Array

signal processing code modules run on the GPU while the CPU focuses on pipe-lining the data

using HASHPIPE. The subspace projection beamforming capabilities are implemented as code

modules on the GPU using a programming suite developed by nVidia called CUDA.
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Figure 3.3: The order of the frequency bins as they arrive at the back end. A single software
instance handles 25 non contiguous frequency bins. Contiguous bins are spread across software
instances.

CUDA is a toolkit based on C/C++ that can be compiled on the host PC. It leverages the

GPU’s powerful parallel processing muscle for large data computation. Though it was originally

developed for faster 2D and 3D graphical rendering, scientists and engineers have begun using it

as a powerful solution to large data parallel processing problems. Since modern computer graphics

and special effects require fast data rendering, such as the drawing of thousands of polygons in

short time periods or advanced ray-tracing capabilities for dynamic real-time lighting, GPUs have

been carefully designed and optimized for rapid parallel processing. Such a parallel muscle makes

for rapid large array signal processing, which is why it was selected to satisfy the needs of a high

bandwidth phased array radio telescope solution.

3.2.4 HASHPIPE

Real-time data throughput to the systems running on each GPU is accomplished on the

CPU via an advanced pipe-lining scheduler. The system, developed by David MacMahon of the
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Figure 3.4: A generic HASHPIPE process pipeline

UC Berkley CASPER group specifically for radio astronomical observation applications, is called

HASHPIPE.

HASHPIPE breaks tasks into threads that manage various steps in the signal process as a

pipeline. Figure 3.2 shows a generic abstraction of a HASHPIPE process. A task is set up as a

library (called a “plugin”) that provides a series of threads that execute each process that operates

on the signal. The tasks are then connected together in a pipeline by buffers that manage the

data-flow.

Buffers run between each task allowing the data to flow in to one process and out another

with semaphore controlled input and output to each stage. Block by block data is buffered and

sent to the next task. This allows each process to run independently of the others and keeps data

flowing down the pipeline. As the data flows into each plugin, it is the plugin’s job to copy the data

to the GPU for processing.

Within a thread a copy of the data is sent from CPU memory to GPU memory. The data

is processed using the sophisticated parallel power of the GPU and then it is returned to the CPU

when it’s done. Thus the CPU spends most of its computational resources on moving the data

around and the GPU is the powerful parallel computing system that does the signal processing

itself.

Using HASHPIPE we can link up the various systems, processes, and mechanisms that

make up our design. Different configurations of threads can accomplish different tasks. On FLAG,

a particular HASHPIPE configuration is called a “mode”.

19



www.manaraa.com

Each mode on flag uses a certain HASHPIPE pipeline setup with its own plugins to accom-

plish a particular job. For example, the proposed “RTBF” mode accomplishes real-time beamform-

ing using the net, transpose and beamforming threads. Another example is the “Fine PFB” mode,

which does fine channelization using a poly-phase filter bank. RFI mitigation can also be done

using HASHPIPE. A mode that will accomplish the real-time RFI mitigation, called the “XRFI”

mode, will be added to HASHPIPE to be the RFI mitigation mode.

The HASHPIPE plugin to be developed for XRFI mode needs a payload that does the

actual filtering work. Thus an XRFI “filter” needed to be developed first. In the first prototype

implementation presented in this thesis, this filter works “stand alone” and receives a single data

block as if executing one step on the HASHPIPE pipeline. If the filter can process one block

successfully, tested multiple times one block at a time, then it can be integrated into a plugin that

will automate the continuous input of blocks.

This thesis documents the XRFI filter in stand alone mode, prior to its integration into

HASHPIPE. Due to time constraints, the XRFI filter has not yet been integrated into the HASH-

PIPE platform. It has been demonstrated, however, that the filter will accept a single block of

data, as if from one of the data buffers on the HASHPIPE process line, and correctly and quickly

processes the result. The following section will describe the system’s design and functionality.

Chapter four will demonstrate that the system works and will function in real-time, meaning it

will be able to “keep up” with real-time processing time constraints, once it is integrated into the

pipeline.

3.3 XRFI Stand Alone Filter Design

The XRFI filter consists of four parts: the correlator, the beamformer, the subspace com-

puter, and the weight projector. Work is done on one data block at a time. The data block will be

described first and then each part will be detailed.

3.3.1 A Typical Data Block in FLAG

The signal data arriving at the array follows Equation (2.5) with each vector being of length

40, for the 38 antenna elements plus two spares of the FLAG PAF. This signal is passed through
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Figure 3.5: Block diagram of XRFI subspace projection beamformer in stand alone mode execut-
ing a single block of data

the FLAG system as described in the above sections and is split up into 500 frequency channel

by the F-engine’s FPGA polyphase filter bank (PFB). Each channel spans 303kHz. As described

above, the data are shared among 5 HPCs. After all the frequency channels are routed, each

HASHPIPE instance handles 25 frequency channels. As described in Equation (2.8), the signal

must be captured in batches of time samples to form an STI. We choose for the RFI filter to have

and STI of length 4000, which matches the HASHPIPE data block size used for FLAG.

All of this results in a data block that is 40x25x4000, 40 antenna elements, 25 frequency

channels, and 4000 time samples. Since some operations, such as correlation, are optimized to

perform most efficiently for data lengths which are powers of two, a typical data block is zero

padded to create an extended block of size 64x25x4000 where the remaining unused antenna slots

can be zeroed out (see Figure 3.6).

HASHPIPE pushes through the data one block at a time. The work is done in the GPU on

one block and then it moves on to the next block. As mentioned before, the proposed XRFI system

has been tested on one block and has resulted in the correct output. See the following chapter for

results.

Prior to running through the correlator, the data passes through a “transpose” or “corner

turn” step. The primary purpose of the transpose thread is to align the data appropriately to be
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Figure 3.6: A Typical Data Block.

processed by the correlator thread in the GPU. A corner turn is done to ensure that the slowest

moving index is the frequency index. After this is done data moves on to the correlator.

3.3.2 Correlator

The job of the correlator is to do as was shown in equation (2.8) and produce the Rx matrix

Rx,k,m =
1
M

(m+1)M−1

∑
n=mM

xk[n]xk[n]H =
1
M

XXH, (3.1)

for the kth frequency bin, where X =
[
x[1],x[2], ...,x[M]

]
represents a data matrix of 64 elements

by M = 4000 time samples. One correlation matrix is computed for each of the 25 frequency

channels. The current filter computes one block (m = 1. Once implemented in HASHPIPE, this

4000 time sample block will be computed once every system tick (13 millisecond windows).

The correlation is performed for 64 antenna elements (24 of them zero padded) across 25

frequency bins for 4000 time samples. Were this done in C, it would take three “for” loops for a

total of 6,400,000 sequential mathematical operations. In pseudo-code the operations can be de-

scribed as:
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for (int freq =0; freq <NUM_FREQ_BINS; freq ++) {

for (int time =0; time <NUM_TIME_SAMPLES; time ++) {

for(int element =0: element <NUM_ELEMENTS; element ++){

...

x[freq][time][ element ]*x_her[freq][time][ element ];

...

}

}

}

But in CUDA, on a GPU all 6,400,000 operations are done in parallel. One step. Very

efficient. In pseudo-code:

...

idx = get_index(freq , time , element);

x[idx]*x_her[idx];

...

and the GPU knows where each element is and causes each part to multiply itself by the proper

neighbor and sums it using a reduction algorithm. The actual implementation of this correlator uses

a linear algebra operator to do the XXH operation and under the hood it leverages the parallelism

described above.

3.3.3 Beamformer

The job of the beamformer is to compute the output,

yk[n] = wH
k xk[n], (3.2)

for the kth frequency bin. This output represents the spatially filtered voltage time series result

coming out of the beamformer. See Figure 2.2 for a visualization. The output yk[n] is then put

through a power spectral density (PSD) estimator which is just a simple summing reduction to

provide the power seen coming out of the beamformer for a given beamforming angle. The beam-

former behaves exactly as described in Chapter 2 with data flowing in and an inner product between

the weight vector and the data results in an output. The key to the RFI filtering is to project the
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beamformer weights into a subspace where there is little or no RFI. When this is done the beam-

former output will contain predominantly the signal and noise components with little if any of the

RFI component.

3.3.4 The Subspace Computer

An autocorrelation matrix from the correlator of Equation (3.1) is fed into the subspace

computer. The subspace computer computes the vector space that spans the RFI, and forms a

projection matrix to map vectors onto the null space of the RFI. As described in Chapter 2, the

space spanned by the RFI is found by doing an eigenvector decomposition on the full rank matrix

R (due to the noise space) as in equation (2.15):

Rx,k,m = UΛUH. (3.3)

This is done using a CUDA “cuSolver” function called cusolverDnCheevd() which can compute

an eigenvector decomposition for dense complex-valued matrices. The subspace computer resides

on the GPU.

Outputs from the correlator are saved in the GPU’s memory, not the CPU memory, and

are used in computing the eigenvectors. No part of the matrix is ever removed from the GPU and

sent back to the CPU. Keeping all data on the GPU and doing a CUDA eigenvector decomposition

makes the process significantly more efficient than moving the data back to the CPU and computing

it there only to have to transport it back to the GPU. The triumph of accomplishing such a complex

linear algebra operation on the GPU serves as the “special sauce” of the XRFI filter. This is a

significant performance improvement and contribution to RFI mitigation in radio astronomy.

After an eigenvector decomposition is done, the projection matrix Pk for the kth frequency

channel is computed by finding the subspace as explained in Chapter 2:

Pk = I−ukuH
k , (3.4)

where I is the identity matrix and uk is the eigenvector corresponding to the largest eigenvalue for

the kth frequency bin.
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To meet timing constraints, the filter is designed to compute the subspace projection matrix

for only one frequency bin per data block. The filter is set up such that k will increment by one,

from 1 to 25, each time a new data block arrives. For each new block from the HASHPIPE

data buffer, a new subspace is computed once for a single frequency channel. Details of this

time multiplexed frequency channel solution will be more thoroughly explained in Chapter 5.

The subspace computer finds the subspace and computes a projection matrix into the subspace.

Once computations are complete it sends the newly computed projection matrix off to the weight

projector where the weights are projected into the null space of the RFI.

3.3.5 The Weight Projector

The job of the weight projector of Figure 3.5 is to project the weights into the null space of

the RFI

wsp = PkwmaxSNR,

where wmaxSNR are the pre-computed max SNR weights already loaded onto the beamformer dur-

ing initialization and wsp are the weights projected into the subspace. The projection matrix opera-

tor that spans the subspace, Pk comes from the subspace computer. Once the weights are projected

into the subspace they are ready to be placed back into the beamformer where it will compute the

spatially filtered output removing the RFI component from the incoming signal.

3.3.6 Closing the Loop

At the end of block processing by the weight projector, the newly updated weights must

be fed back into the beamformer and are then applied to the same raw sample vectors xk[n] which

went through the correlator. In Figure 3.5 it can be seen that, in the stand alone case, the very same

data that is being used to compute the subspace is also being pushed through to the beamformer.

A delay needs to be put in place so that the computed subspace corresponds to the correct data set.

This design solution is sufficient to run the beamformer in stand alone mode but some revisions

will need to be made for it to be integrated into HASHPIPE. See Chapter 5 for more information

and a proposal on how this will be addressed.
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3.4 Summary

This chapter has focused primarily on the design and development of the real-time RFI

mitigation “XRFI” filter on the FLAG system of the Greenbank Telescope in Greenbank, West

Virginia. The system as a whole was examined in brief whilst the specific XRFI filter has been

explained in detail. While a complete description of the system functionality and its parts demon-

strates the research process, it is essential to prove that the system works. The primary focus of the

next chapter will be to document the verification procedures and resulting output of the system as

a proof of concept for a functional system.
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CHAPTER 4. REAL-TIME RFI MITIGATION: MEETING THE MARK

To prove that a system can perform subspace projected beamforming operations, complete

with all the constituant functions of beamforming, array correlation and weight calculations run-

ning in real time, a few things need to be shown. First, it is necessary to demonstrate that the

minimum timing constraints for the beamforming update rate are met by all parts of the system.

This includes worst case timing metrics of more computationally intensive routines such as the cor-

relator, beamformer, and subspace projection computer blocks. Secondly, valid test data must be

processed through the system to verify RFI cancellation, including evaluating the resulting beam

response pattern and constituent signal levels (i.g, SNR and INR) in the beamformed output time

series.

This chapter will document the results of various tests that expose different parts of the

system showing timing measurements as well as data processing. The objective is to prove concept

where proof is required and demonstrate functionality.

4.1 Real-Time Processing Constraints

As with any timing sensitive embedded application, as simple as a small state machine to as

complex as an operating system, all implementations must satisfy a maximum timing constraint.

If the whole process can meet the timing constraint, dictated by the refresh rate of the system,

then the process runs seamlessly and continuously for its intended job. Such processes are called

“real-time” processes.

In terms of the RFI filter, how often do the beamformer weights need to be updated? The

answer has already been specified [38]. The real-time beamformer has been specified to meet a

13ms time window because the 4000 time samples specified in chapter three represent 13 ms of

time. This means that if the RFI filter, which includes the beamformer in its critical path, is to be

real-time it must also meet the 13ms timing constraint.
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The timing constraint specifies the maximum amount of processing time the four parts

of the XRFI filter (correlator, beamformer, subspace computer and weight projector) can take to

run and complete their jobs. The 13ms window is a worst case maximum time spec for a sin-

gle data block (as specified in chapter three) to run through the filter and have a result rendered

out. It includes the computation time of the PSD estimate (in Table 4.1 it’s included as part of

the Beamformer since it is a component of the Beamformer code). It also includes memory copy

time between the CPU to the GPU. It does not include initialization needed to set up data buffers,

allocate memory and instantiate components of the system. The initialization will all be complete

before the data begins to flow. The following section will discuss the resulting timing measure-

ments taken on the function calls and the memory copy time that comprise the data throughput of

the XRFI filter.

4.2 Profiling the CUDA Implementation

As part of the CUDA toolkit, nVidia has provided a handy profiling application that can

analyze how long each function call and memory copy take. Table 4.1 shows the measured timing

analysis as summed up for each implemented part of the proposed RFI cancelling system in GPU

clocked time. The table presents an abbreviation of the profiler output for the reader’s convenience

(For the complete profiler report refer to Appendix A). Note that the analysis shows the beam-

former and correlator operating at full bandwidth (i.e. for all 25 frequency channels of a software

instance). This is how it has been tested. The numbers included in this analysis for the subspace

computer are working on only one frequency channel, NOT all 25. By working on only one fre-

quency channel per GPU data block instance (i.e. each mcnt increment using FLAG nomenclature)

per time window the time specification can be met.

The reader may ask if only working on one frequency channel per 13ms time window is a

practical result. Remember that the 25 frequency channel filter is replicated across all the GPUs

on all of the HPCs. Recall from the previous chapter that a total of 20 instances of the filter will

be running at the same time: 5 HPCs × 2 GPUs per HPC × 2 instances per GPU = 20 instances of

the XRFI filter. If each frequency channel is 303 kHz then 20 × 303 kHz = 6.06 MHz Also recall

from the previous chapter that the frequency channels are spread in a stripe like pattern across

the 5 HPCs and thus if only frequency channel 1 is running on all 20 instances then 6.06 MHz

28



www.manaraa.com

Table 4.1: Abbreviated nVidia Profiler Functional Timing Report

Function Name Time Freq. Channels Time % of 13ms
Beamformer + Weight Projector 1.14 ms 25 8.8%
Correlator 1.128 ms 25 8.7%
Subspace Computer 2.573 ms 1 19.8%
Pinned Memory Copy (CPU Host to GPU) 6.26 ms 25 48.2%
Pinned Memory Copy (GPU to CPU Host) 23 µs 25 0.2%
Total (One Frequency Channel): 11.128 ms 85.7%

of contiguous bandwidth is successfully being filtered in real-time as long as this one frequency

channel meets the timing window.

Does the filter meet the 13ms timing constraint? The total time for beamforming, correlat-

ing, subspace computation and weight update sums to 4.845ms (see Table 4.1). The memory copy

takes a grand total of 6.283 ms using nVidia’s pinned memory data paradigm. Therefore the whole

timing profile for a single block of data to pass from input to output of the filter is 11.128ms per

frequency channel. This fits within the 13ms time window with a 1.88ms margin and therefore one

instance of the the filter does meet the real-time specification, according to the nVidia profiler.

It is important to note that Table 4.1 shows GPU clocked time, not clock time, for all of the

functions. “Clock time” refers to time as reckoned by the rotation of the earth. GPU time refers

to the number of clock cycles attached to the task, but does not represent the actual clock time to

complete the task. Also, the timing experiments evaluate computational load for a single instance

of the beamformer on a single GPU. The FLAG GPU software architecture runs two concurrent

instances of the beamformer in each GPU, so we expect that we will effectively need to complete

the RFI canceling processing in half of the available 13 ms data block update cycle time. Other

unavoidable operations such as context switching, data movement, and other overhead processes

would not get counted in this GPU time profile report but they do add to the total time needed to

meet the timing constraints of the system.

To address the concern of wall clock and GPU clocked time, another timing experiment

was conceived that illustrates more of the story. All of the functions in the XRFI system were run

1000 times and averaged. Table 4.2 shows the results of this experiment. In this particular test, the

whole XRFI filter was run with an event clock that reflects more what the wall clock time would

be. Notice that the result averages to about 17 ms. This is above the 13 millisecond result. It is
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Table 4.2: Wall Time Report

Total Elapsed Time (all functions over 1000 iterations) 16874.28 ms
Number of Iterations: 1000
Average Elapsed Time: 16.87 ms

also true that this will have to work on two instances running on the GPU and they both have to run

under the 13 ms time constraint. The above experiments address only one instance being timed.

Can XRFI be a real-time system?

One of the reasons the second experiment doesn’t meet the 13 ms constraint is that this

timing experiment was done with standard CUDA “MemCopy” functions and not nVidia’s pinned

memory functionality. When the filter is finally implemented with pinned memory, the timing will

go down significantly.

Another thing to consider is the 13 ms timing constraint itself. The only reason there is a

13 ms time constraint is because 13 ms worth of samples are gathered per data block. If the block

size is increased, then there is more time to process the block. Doubling or tripling the data block

size would allow for a window that could be 26 or 39 ms. Furthermore, the MemCopy does not

double or triple linearly as the block size increases, it remains relatively fixed. What’s the cost?

Memory, in the GPU.

The increased memory in the GPU is not a concern because the current implementation

only uses a tiny fraction of the memory available. Current and future GPUs will have more than

enough memory to allow for doubling or tripling of the data block.

This doubling or tripling of the block solution is also attractive because, with two instances

of HASHPIPE running for each GPU, the larger time margin will allow both instances to run

cleanly with plenty of extra room for error. Further tradeoff analyses will have to go into studying

block sizing as the filter is implemented but the researchers who are developing the final XRFI

system are exploring this solution.

The filter is still actively being incorporated into HASHPIPE for continuous real-time op-

eration. By showing that the profiler finds that the system will work in 11 ms, acknowledging the

wall clock time and the need to double the work load for two HASHPIPE instances and address-
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ing solutions to the MemCopy cost, this thesis proposes that the implemented XRFI filter can be

real-time, once complete. See Chapter 5 for further discussion on the final implementation.

4.3 Initial Unit Tests

To verify that the system operates correctly a test model was generated that represented

a simulation of a uniform line array (ULA). Once the test data was generated, each step in the

system was pre-computed in MATLAB: correlation, eigenvector decomposition, projection matrix

computation and weight projection. The data was then quantized and run through the filter and

the result compared with the MATLAB simulation. Unit tests were considered a “PASS” when the

output data was equal to within a scale factor and quantization range of the simulated result.

4.3.1 The Test Model

Using the signal model as discussed in previous chapters, a simulated incoming data block

was generated with a SOI, one RFI source, and noise:

x = C(as[n]+vd[n]+n[n]), (4.1)

with n[n] being the noise vector of unit variance, and C will be explained below. The SOI was

modeled as a zero mean circularly symmetric complex white Gaussian random process with a

signal-to-noise ratio (SNR) of -30dB

S = Y+ jZ (4.2)

Y∼N (0,σ2) (4.3)

Z∼N (0,σ2) (4.4)

σ = 10−30dB/20 (4.5)

ρyz = 0 (4.6)

and s[n] is a realization of the random process S. RFI sequence d[n] is also a realization of a zero

mean circularly symmetric complex white Gaussian random process with and interferer-to-noise
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ratio (INR) of +20 dB. Note that this is designed around the assumption that deep space signals

-30 dB below the noise floor are common and strong interferers, such as the downlink for a GPS

satellite moving overhead, could be as strong as 20 dB over noise levels.

A test data block was generated as described in Section 3.3.1 with 4000 time samples

across 25 frequency channels arriving at a simulated uniform line array having 64 elements spaced
λ

2 apart. The data were generated independently across all 25 frequency bins as a broadband signal

and broadband interference.

To add additional fidelity to the simulation a mutual coupling model with element-wise

complex gain variations was included in C, a Cholesky factorization of the following matrix (for

L=64 elements):

AL =


1 1

2
1 · · · 1

2
L−1

1
2

1
1 · · · 1

2
L−2

...
... . . . ...

1
2

L−1 · · · · · · 1

 , (4.7)

where AL = CCH . When a plane wave arrives at the ULA, the current induced in one antenna

element causes the antenna to re-radiate some of the energy to the other elements in the array.

More is induced between antennas closer together while less is induced between antennas farther

apart. The matrix A models the pairwise mutual coupling between all antennas in the array. The

Cholesky factor C can then be multiplied by the data and the result is a relatively high fidelity

model of a uniform line array (ULA) receiving a Gaussian signal with interferers overhead.

Using MATLAB to run the model explained above, a 64 element × 25 frequency bin ×

4000 time sample data block was generated for the GPU. This data block was to be fed directly

into the XRFI filter housed on the GPU, but first it needed to be reformatted.

4.3.2 Quantizing the Data

While it is true that the data were fed directly from the MATLAB simulation into the GPU,

they need to be modified to match the FLAG data format.
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FLAG will only accept the data in (8-bit real, 8-bit imaginary) structures. This means that

the complex double precision floating point numbers coming out of MATLAB needs to first be

restructured into an interleaved pattern: real, imaginary, real, imaginary. It also means that each

data entry needs to be recast from double precision floating point representations to 8 bit integers.

This is called the “quantization” step for the simulated data.

In a fashion similar to an ADC, the higher resolution double precision data points were

quantized and mapped to a number in the range [−128 : 127] reflecting the range of a signed 8 bit

integer. The number -128 corresponding to a lower limit set on the double precision data and the

number +127 corresponding to an upper limit placed on the double precision data.

Also, a data scaling value prior to quantization had to be chosen carefully to ensure that the

data were preserving at least two significant digits after quantization. If the scale was set too low

then the signal could be lost in quantization error. If the scale was set too high then the relative

signal to interferer ratio would be distorted, the subspace would be difficult to find and the data

output would not show good RFI mitigation even though the system is functioning properly. After

picking a good quantization scale the data could be processed and the output from the correlator,

subspace computer, and beamformer could be observed.

4.3.3 Data Output Results

Data was first read in and copied over to the GPU. It was then processed through all

four component sub-systems of the interference nulling beamformer: correlator, subspace com-

puter, weight projector, and beamformer. Resulting data output was compared with a MATLAB-

simulated expected result for each part. If the data matched, the sub-system was considered func-

tional, at least at an initial level. The following sections present the resulting data output that

verified correct operation of the XRFI filter.

Correlator Output

To test the correlator the data modeler was set with the following parameters. The simulated

SNR was set to -30dB below the noise floor. The simulated INR was set to -100 dB below the noise

floor to simulate relatively 0 interference. The signal is broadband; evenly distributed across all
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Figure 4.1: Correlator Unit test. Top: Simulated Result. Bottom: Output from GPU

frequency channels. For this test, there is little signal component, just as in real radio astronomy

applications, no interference component, and noise is simulated to be the strongest component.

With the mutual coupling model, the expected resulting correlation matrix, is Toeplitz for all 25

frequency channels, and the output shows that it was. Figure 4.1 shows a colored rendering of the

MATLAB simulated correlation matrix and the corresponding matrix gathered at the output of the

CUDA correlator.
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Projection Matrix Output

To ensure proper operation of the subspace computer, the projection matrix derived from

the eigenvector decomposition must be verified. Thus an eigenvector decomposition is done in

MATLAB and a projection matrix is computed from it. The data are then placed through the real-

time GPU correlator and the resulting correlation matrix is sent to the subspace computer where it

produces a projection matrix which is read out for comparison.

Since this test requires an RFI source, the INR was set to be at the noise floor while the

SNR was maintained at -30 dB below the noise floor. This provision ensures that the dominant

eigenvector can be attributed to the RFI source and a good subspace projection can be constructed.

The two matricies were compared by taking the Frobenius norm of the difference between

the two matrices (PMAT for the MATLAB simulated projection matrix and PGPU for the projection

matrix computed from on the GPU):

ε = ‖PMAT−PGPU‖F. (4.8)

This test yielded ε = 0.0018. Since ‖PMAT‖F = 7.9373 and ε << ‖PMAT‖F, the matrices were a

close match.

Beamformer Output

The Beamformer output is a binned version of the sample power spectrum estimate. To

finalize the unit testing of the XRFI filter, data are read into the input of the filter. It then moves

through all four stages of the filter and the beamformer’s weights are projected into the RFI mit-

igated subspace. The expected power spectrum, with subspace projected beamformer weights, is

computed in MATLAB and the actual GPU output is compared with the simulation. Figure 4.2

shows the comparison with a few data points called out to show decimal accuracy. The signal, in

this case, has an SNR of -30 dB with an INR of 10 dB with respect to the noise floor to simulate

dominant RFI. Also recall from Chapter 3 that the output from a single GPU has 25 non-contiguous

channels, the results from this test are also non-contiguous.
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Figure 4.2: Beamformer Initial Test. Top: Simulated Result. Bottom: Output from GPU
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4.4 Verification of the Adaptive RFI Mitigating Beamformer Output

The ultimate goal of the Adaptive RFI Mitigating Beamformer is to mitigate RFI in real-

time. An argument that real-time operation can be achieved with XRFI was presented in Section

4.2. In this section the beampattern is examined to verify a null was in fact placed in the direction of

the RFI as well as a series of six power spectrum tests that should prove XRFI is a fully functional

64 element array adaptive beamformer implemented in a GPU that is capable of detecting a signal

of interest in the presence of RFI.

4.4.1 The Beampattern Result

The purpose of rendering the beampattern is to provide insight into the spatial behavior of

the beamformer-antenna system. With this visualization a full 180 degree scan of the beampattern

response is presented for the ULA. Adjacent element spacing is set to λ

2 between the 64 elements.

Max SNR weights are pre-computed for the array and are then projected into the RFI mitigated

subspace using P. A signal of interest is to be located at Ωs = +10 degrees and an interference

source is at a direction Ωi =−25 degrees. The SNR is set to -30 dB and the INR is set to +10 dB

to insure that the strongest eigenvector corresponds to the RFI source.

The beampattern is rendered in MATLAB by taking the GPU computed weights and multi-

plying them by the simulated signal to get the power output response as a unit test source is moved

through all angles -90 to 90.This is shown in Figure 4.3. Note first that the beam main lobe is

centered on Ωs, at 10 degrees. The dotted line in the beampattern plot represents the direction of

the incoming RFI source Ωi. Notice that the null placed in the direction of the RFI, so we conclude

that the RFI mitigating beamformer works!

4.4.2 Power Spectrum Estimation Tests

The beamformer must provide clear SOI detection at signal levels well below the noise

floor and also mitigate RFI while causing minimal corruption to the SOI. To verify that the beam-

former meets this expectation, six power spectrum tests have been devised. All of these involve

modifications to the incoming signal to expose the functionality of the system.
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Figure 4.3: Visual MATLAB rendering of a single beampattern produced from GPU computed
beamformer weights. MATLAB computed the power at all angles of arrival, GPU computed the
weights. The beamformer has a main lobe detecting a signal of interest at 10 degrees. The dotted
line shows the direction the RFI at -25 degrees. A null is placed in the direction of the interference.

The signal model was set to an SNR of -20 dB for all six tests with an INR set to +20.

Also note that, though FLAG is equipped with the ability to run seven beams simultaneously, each

analysis was done for a single beam only.

Recall that the output of the beamformer for the kth frequency channel is

yk[n] = wH
k xk[n].

The output observed in each test is always a power spectrum. The measured power spectrum output

from the beamformer S is defined as

S = [sk=0, sk=1, ... sk=K−1]
T (4.9)
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for K frequency channels and

sk =
1
N

N−1

∑
n=0
|yk[n]|2 =

1
N

N−1

∑
n=0

(wH
k xk[n])H(wH

k xk[n]) = wH
k Rx,k[n]wk. (4.10)

Each test is described as follows:

Test One The first test is a signal only test. The signal model is modified to

xsignal[n] = as[n], (4.11)

with a resulting power spectrum which we will call Ssignal. By doing this, one observes the power

output as arriving from the source alone without the presence of noise. This represents the desired

detected spectrum the observer is looking for when viewing a radio emitting signal out in the

universe.

Figure 4.4 shows the source only spectrum as viewed from the beamformer output with no

RFI mitigation operations running (i.e. turn off the subspace computer and weight projector and

view the signal through the beamformer using max SNR weights)

y[n] = wH
maxSNRxsignal[n]. (4.12)

The idea is to use this as a point of reference for the other tests. The RFI mitigation is turned off

here and will be turned on in later tests to verify that it does not corrupt (or minimally corrupts)

the spectrum of the signal of interest.

It’s important to note that, though the signal arrives at the beamformer at -20 dB below the

noise floor, the arriving signal is amplified by a factor of 35 dB or so through the beamformer. As

was discussed above, this amplification is seen in Figure 4.3 recognizing that the beamformer is

designed to amplify all signals arriving at 10 degrees.

Test Two The second test involves observing the noise alone:

xnoise[n] = n[n]. (4.13)
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Figure 4.4: Test One: The computed power spectrum estimate of the broadband signal alone, no
noise, no RFI, coming out of the beamformer using no RFI mitigating subspace projection. Note:
the data tabs show the power levels on two frequency bins.

This power spectrum output (Snoise) should reflect only that of noise power arriving at the antenna

array. RFI mitigation is turned off for this test, thus only the max SNR weights are used on the

beamformer. See Figure 4.5 for the noise power spectrum output.

Test Three The third test involves the SOI and noise together:

xsn[n] = as[n]+n[n], (4.14)

with power spectrum Ssn. Again, RFI mitigation is off for this test. The beamformer is working

correctly if

Ssn = Ssource +Snoise. (4.15)
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Figure 4.5: Test Two: The computed PSD coming out of the beamformer detecting noise only. No
RFI mitigating subspace projection.

Figure 4.6 shows the signal and noise spectrum. The spectrum is clearly the sum of the signal and

noise spectra.

Test Four The fourth test is to observe the resulting output of the beamformer with the signal

model including signal, interferer and noise:

x[n] = as[n]+vd[n]+n[n]. (4.16)

This power spectrum we label SmaxSNR since it is the output of the beamformer with all three

signal components using only max SNR weights loaded onto the beamformer. No RFI mitigation

is enabled. With RFI mitigation turned off for this test, one can infer the contribution the RFI adds
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Figure 4.6: Test Three: The computed PSD coming out of the beamformer detecting both signal
and noise, no RFI. The subspace projection is turned off for this test. Note that the spectrum is the
sum of the two previous spectra.

to the signal:

SRFI = SmaxSNR−Ssn. (4.17)

Figure 4.7 shows the power spectrum for test four. This spectrum will be compared with the

spectrum in the next test where RFI mitigation is turned on. The beamformer is working correctly

if the RFI component is missing.

Test Five The fifth test is the test that sends the full signal model through the beamformer with

RFI mitigation enabled. This reflects the fully filtered response and the resulting spectrum Ssp is

the desired RFI mitigated spectrum. Figure 4.8 shows the output. The beamformer is correctly
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Figure 4.7: Test Four: The computed PSD coming out of the beamformer detecting signal, noise
and RFI. The subspace projection is turned off for this test. Note that this spectrum shows an added
RFI component on top of the signal + noise spectrum observed previously.

removing (or more correctly “mitigating”) the RFI if

Ssp ≈ Ssn. (4.18)

The above equation is an approximate equality and not an equality simply because the signal space

and the RFI space are not necessarily orthogonal to one another and thus the RFI is more likely

“mitigated” rather than “removed” (see Chapter 2).

Compare Figure 4.7 with Figure 4.8. Note that the extra RFI component has been removed

when the full signal is placed through the RFI mitigating filer. Also compare Figure 4.6 with

Figure 4.8. Note that they are nearly identical. This also suggests that, with subspace projection

enabled, the only part of the signal coming through the filter is the signal + noise component.

43



www.manaraa.com

Figure 4.8: Test Five: The computed PSD coming out of the beamformer detecting signal, noise
and RFI with RFI mitigation enabled. Note that this spectrum approximately matches the signal
+ noise spectrum of Figure 4.6 showing that it successfully removed the RFI leaving the signal
+ noise untouched, and that it shows the RFI component missing from the signal + noise + RFI
spectrum of Figure 4.7.

Test Six The final test is to check if the original signal remains uncorrupted after passing through

the beamformer with subspace projected weights. For this test

xsignal[n] = as[n]

again and the weights used at the beamformer are the projected weights:

y[n] = wH
spxsignal[n]. (4.19)

The resultant spectrum Ssig,sp should be approximately equal to the spectrum found in test one
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Figure 4.9: Test Six: The computed PSD coming out of the beamformer detecting signal only
while also beamforming using the subspace projected weights. Note that the signal is uncorrupted
by comparing this Figure with Figure 4.4.

(Ssignal), thus the beamformer is working correctly if

Ssig,sp ≈ Ssignal. (4.20)

Observe Figure 4.9 to see the results of the sixth test. Note that Figure 4.9 nearly exactly matches

Figure 4.4.

Summary of the Six Tests After examining the results of each test, the conclusion is that the

beamformer has proven both that it can correctly mitigate the RFI while also maintaining minimal

corruption of the SOI. This implies that the user will be able to reduce the corruption on channels

with RFI and be able to recover at least some if not all needed signal data in previously unreliable

channels!
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4.5 Conclusion

It has been the goal of the present discussion to demonstrate that the spatial filter does in

fact meet the requirements for it to be considered a real-time RFI mitigating beamformer capable

of radio astronomy grade applications. First a timing analysis of the GPU performance was ex-

plored which proved that the computation time of the XRFI filter meets the timing budget. The

beamformer then needed to show correctly filtered output. The initial data comparison tests proved

that the GPU implemented system rendered data that matched the MATLAB simulated expected

results. Next, the MATLAB rendered beampattern showed a null in the direction of the RFI. This

visually confirms that the filter spatially filters the RFI. Finally, the six power spectrum tests show

that, at least for this test signal scenario, the SOI can successfully be recovered from an RFI in-

fected channel if passed through the XRFI real-time beamformer.

The XRFI filter is ready to be implemented on the FLAG system by integration into HASH-

PIPE. Its robust timing and filtering capabilities also make it the perfect solution for other appli-

cations that need interference cancellation in real-time. The future steps and solutions that XRFI

will offer are the subject of the following chapter.
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CHAPTER 5. CONCLUSIONS: THE FUTURE OF XRFI

5.1 Where to from Here?

Now that the filter has been demonstrated to function as a stand alone beamformer, and it

has been shown that it will meet the real-time requirements, there is more that this new system

can offer when fully implemented. First, the system needs to be integrated into HASHPIPE as

explained in previous chapters. This will unlock the full potential of the XRFI system for FLAG.

After it is integrated into HASHPIPE, this RFI mitigation solution becomes applicable to fields

other than radio astronomy! The XRFI beamformer is also planned to be directly inserted into a

communications application where it will act as the key component to an anti-jamming system for

the office of naval research (ONR). It is the hope of the author that the system will be of use to

both the radio astronomy as well as the communications communities.

This chapter will describe what the future of the XRFI beamformer should be. It will begin

with a discussion of a proposed round-robin scheme for real-time broadband RFI mitigation in the

HASHPIPE environment. We will end with a discussion on other applications outside of FLAG.

5.2 Integration into HASHPIPE

Currently, the XRFI filter is in a state where it can only operate on one data block at a time.

Since stand-alone mode is a proof of concept, it was documented. However, in order to enable the

FLAG system to cancel RFI, the XRFI stand-alone beamformer must be integrated into the whole.

This means that it must be made into a plugin for HASHPIPE.

Creation of the HASHPIPE plugin is straightforward. It involves moving all of the function

calls in the stand alone filter into the HASHPIPE plugin environment. Wrapper functions in the

HASHPIPE state machine are well defined and have been done for the real-time beamformer [38].
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Figure 5.1: Round Robin Timing Diagram

XRFI will be integrated in the same manner as the real-time beamformer. The format of the

programming files should be easy enough to follow.

5.3 Extending the Bandwidth: the Round-Robin Proposition

After integration into HASHPIPE occurs, the system will mitigate RFI across a significant

band but it doesn’t operate on the whole bandwidth yet. Recall from chapters three and four

that, due to computational resource limitations, the subspace computer can only operate on one

frequency channel per block of data (here we assume the FLAG data block size has been doubled

as suggested in Ch. 4 to accommodate two instances per GPU, thus producing a 26 ms block

time window). Also recall that at any given moment a total of 20 instances of the HASHPIPE are

running (5 HPCs × 2 GPUs per HPC × 2 HASHPIPE instances per GPU). This means that, if the

XRFI beamformer is running on all instances, 20 bins are being mitigated on a 13ms time window.

Since the bin width is 303kHz, running the filter on 20 frequency bins accounts for 20 × 303kHz

= 6.06 MHz. While this is a good start it can be improved upon.

The proposed solution involves cycling through the frequency bins, moving from bin to

bin on each 13ms time window in a round-robin scheme, as shown in Figure 5.1. The figure is
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Figure 5.2: Modified Signal Flow Diagram for Round Robin for the kth frequency channel.

organized into “M counts.” A single M count corresponds to a 4000 time sample block. Data flows

in HASHPIPE on a block-by-block basis, so one may think of the block as a single system tick.

Both the correlator and the beamformer execute at the same time across all 25 frequency channels

at every system tick. The correlator output is saved into a partial sum every system tick and data

is dumped when the subspace computer asks for an autocorrelation matrix once every 25 time

windows. Work is done on each frequency channel in a staggered fashion so that after the first

25 blocks have passed by, the weights are updated once for each frequency channel on each time

window. Figure 5.2 shows a signal flow diagram for the kth frequency channel.

This cycling makes it such that the subspace computer and weight projectors only have to

work on one frequency channel at a time but all 25 frequency bins in a HASHPIPE instance can be

serviced. The total time window is 25 × 26ms = 650ms. This means that after 650ms the whole

bandwidth is fully subspace projected with a null being placed in the direction of the moving RFI

for 500 frequency channels. In other words, 500× 303kHz = 151.5 MHz of bandwidth are updated

at a refresh rate of 1
650ms = 1.54 times per second. If the flying satellite or RFI source is relatively

stationary over a 650ms time window then no subspace smearing will occur.
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Prior work has shown that for a phased array feed even larger than FLAG, GPS satellites

move slowly enough that this 650ms correlation integration window would not produce “subspace

smearing” to an extent which would reduce cancelling null depth [18]. We conclude that 650ms

integration and weight update time windows would be more than adequately frequent for many

real-world RFI moving sources.

This is an exciting proposition considering that, at present, no system can mitigate across

such a bandwidth at such a rate. With this fully implemented it will become the backbone for

future projects that need interference mitigation.

5.4 The Communications Application for the Office of Naval Research (ONR)

RFI mitigation in a radio astronomy paradigm is only one application of the XRFI filter.

Interference mitigation is not just for deep space observation. If the idea of an interferer is recast

into the idea of a jammer in a communications application then the XRFI filter becomes an anti-

jamming beamformer.

Consider an incoming communications signal arriving at an antenna array. The signal

could be modulated using a digital modulation scheme (i.e. QPSK). The plane wave model would

be exactly the same as was pictured in Figure 2.1. A jammer interferes in a similar manner to an

RFI source in radio astronomy. Thus the signal model could be essentially the same:

x[n] = as[n]+vd[n]+n[n], (5.1)

excepting that the second component would refer to the jamming source intent on blocking com-

munication on all frequency channels by spamming a strong signal across a wide band.

For a communication link, the XRFI filter will be useful in the scenario where the jamming

signal is significantly stronger than the transmission source. First, the transmitter and beamforming

receiver are designed to optimize the SNR between a maximum transmission power and a mini-

mum acceptable bit error rate (BER) without the presence of a jammer. The link is then assumed

to be implemented in an environment with a jammer INR large enough that the strongest eigenvec-

tor of the antenna array correlation matrix would correspond to the jamming source. Under this
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condition, a matrix that projects into the null space of the jamming signal can be constructed using

the exact same principles explained in Chapter 2.

The XRFI filter need only be modified in a few ways to accomplish the task of jamming

mitigation in an array communications environment. First, the vector lengths need to match the

number of antenna elements in the communications application. Next, the number of frequency

channels and bin widths need to match the bandwidth of the link. Finally, The time windows would

need to be adjusted to meet the relevant integration times appropriate to expected jammer motion.

Other than these changes the filter would work the same as it will in the FLAG system as it is

integrated into HASHPIPE.

The office of naval research (ONR) is currently sponsoring a prototype anti-jamming com-

munication link that will use the XRFI system as its primary anti-jamming payload. The system

will use a 16-element patch antenna connected to F-engines housed on a newer board from UC

Berkely called the SNAP board. These feed into a set of four HPCs that house nVidia GTX 2080

GPUs. The design paradigm is very similar to FLAG and will use HASHPIPE (or something sim-

ilar) to do the data throughput. Successful final implementation the full XRFI yields both an RFI

mitigation system for RA as well as a communication interference cancelling solution for ONR.

5.5 Conclusion

The future of the XRFI filter is to provide the RFI mitigation solutions to various applica-

tions. It will need to be integrated into HASHPIPE and placed in the FLAG ecosystem in order to

run on real world data. This should be a feasible task as discussed. Then it will be integrated into

the communication link being developed for the office of naval research. The system is capable of

mitigating interference in many applications.

As an integral part of the radio astronomy systems group at Brigham Young University

the XRFI filter should be a launch point for future RFI mitigation subsystems on other projects

involving GPU solutions to communications and radio astronomy. It may even be a starting place

for RFI mitigation in BYU’s new ALPACHA phased array feed project for the radio astronomy

observatory down in Puerto Rico. It is the author’s best hope that the XRFI filter will serve the

community well and help promote the use of RFI mitigation solutions in radio telescopes as the

science advances in the coming years.
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Radio frequency interference (RFI) mitigation enables radio astronomical observation in-

frequency bands that are shared with many modern satellite and ground based devices by fil-

teringout the interference in corrupted bands. The present work documents the development of

a beam-former (spatial filter) equipped with RFI mitigation capabilities. The beamformer is in-

tended forsystems with antenna arrays designed for large bandwidths. Because array data post

processing onlarge bandwidths would require massive memory space beyond feasible limits, there

is a need fora RFI mitigation system capable of doing processing on the data as it arrives in real-

time; storingonly a data reduced result into long term memory. The real-time system is designed to

be imple-mented on both the FLAG phased array feed (PAF) on the Green Bank telescope in West

Virginia,as well as future radio astronomy projects. It will also serve as the anti-jamming com-

ponent incommunications applications developed for the United States office of naval research

(ONR). Im-plemented on a graphical processing unit (GPU), this beamformer demonstrates a

working singlestep filter using nVidias CUDA technology, technology with high-speed parallelism

that makesreal-time RFI mitigation possible.
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APPENDIX A. FULL NVIDIA TIMING REPORT
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Table A.1: Full nVidia Profiler Functional Timing Report

% of 13ms Time (µs) Calls Avg (µs) Function Name
Beamformer +
Wgt. Projector:
5.60% 728.31 1 728.31
0.22% 27.904 1 27.904
2.22% 287.81 1 287.81
0.78% 100.45 1 100.45

cgemmBatched 64x32
cgemmBatched 64x32

data restructure
sti reduction

Total 8.8 % 1.14 ms
Correlator:
6.42% 834.01 1 834.01 cgemmBatched 32x32
2.26% 293.34 1 293.34 correlator data restructure
Total: 8.7% 1.128 ms
Subspace
Computer:
3.68% 478.46 63 7.594
2.99% 388.21 62 6.2610
2.94% 382.21 63 6.0660
6.61% 339.01 62 5.4670
1.36% 176.74 63 2.8050
1.35% 174.94 64 2.7330
1.32% 171.49 63 2.7220
1.07% 138.88 63 2.2040
0.92% 119.70 63 1.9000
0.73% 94.016 62 1.5160
0.45% 57.536 26 2.2120
0.38% 48.401 62 0.780
0.02% 1.7600 1 1.7600
0.02% 1.5360 1 1.5360

syhemv kernel
nrm2 kernel
her2 kernel
nrm2 kernel
dot kernel
ger kernel

gemv2T kernel val
reduce 1Block kernel

axpy kernel val
scal kernel val
initIdentityGPU
[CUDA memset]

lacpy kernel
reset diagonal real

Total: 19.8% 2.573 ms
MemCpy:
48.16% 6.26 ms
0.18% 23 µs

Host to Device
Device to Host

Total: 48.27%
Grand Total: 85.7% 11.128 ms / freq. bin
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